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Abstract A Monte Carlo simulation is used to obtain the

statistical properties of the Weibull parameters estimated by

the linear regression, weighted linear regression, maximum

likelihood and moments methods, respectively. Results re-

veal that the estimated Weibull modulus is always biased,

which has a much lower accuracy than the scale parameter.

The mean square error is adopted as a criterion for the com-

parison of the estimation methods. It is shown that both the

probability estimators and the weight factors have great ef-

fects on the estimation precision of the Weibull modulus. The

weighted linear regression with a weight factor of Wi=3.3Pi –

27.5[1–(1–Pi)
0.025] and a probability estimator of Pi=(i–0.3)/

(n+0.4) gives the most accurate estimation for sample sizes of

9–52. The maximum likelihood method recommended for

any sample size by previous authors, comes first only for

sample sizes larger than or equal to 53; furthermore, it is less

conservative than the regression methods, and hence results

in a lower safety in reliability predictions.

Introduction

Weibull statistics has been commonly used to characterize

the statistical variation in the fracture strength of brittle

materials such as ceramics, glasses and solid catalysts [1–

5]. It is based on a ‘‘weakest link theory’’, which means

that the most serious flaw in the material will control the

strength, like a chain breaking if the weakest link fails. The

most serious flaw is not necessarily the largest one because

its severity also relies on its location and orientation. In

other words, the flaw subjected to the highest stress

intensity factor will be strength controlling.

Using Weibull’s two-parameter distribution, the proba-

bility of failure P at or below a stress r is represented by

[1, 6, 7]

P ¼ 1� exp � r
r0

� �m� �
ð1Þ

where m and r0 are the Weibull modulus and the scale

parameter, respectively. The Weibull modulus m, also

called the shape parameter, represents the scatter in the

fracture strength. A higher m leads to a steeper distribution

function and thus a lower dispersion of the fracture

strength. The scale parameter r0 corresponding to the

fracture stress with a failure probability of 63.2% is closely

related to the mean strength �r of the distribution [1, 7].

�r ¼ r0C 1þ 1

m

� �
ð2Þ

where G is the gamma function. For the Weibull modulus

of 5–20, a typical range for technical ceramics [7], G(1+1/

m) takes values between 0.9 and 1.

There are several methods available in the literature [7–

18], for the determination of the Weibull distribution

parameters from a set of experimentally measured fracture

stresses. However, the values of the estimated Weibull

parameters can vary according to the method employed.

The interest of choosing an appropriate method for an

accurate estimation of the Weibull parameters, therefore,
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arises. Bergman [8] and Sullivan and Lauzon [9] investi-

gated the relative merits of four commonly-used proba-

bility estimators in the linear regression method by using

computer-generated data and actual experimental results,

respectively. Khalili and Kromp [7] and Trustrum and

Jayatilaka [10] compared the linear regression, the maxi-

mum likelihood and the moments methods based on a

Monte Carlo simulation. Bergman [11], Faucher and Tyson

[12] and Langlois [13] reported that in the linear regres-

sion, the use of the weight factors could improve the

estimation quality of the Weibull parameters.

In spite of several contributions on the subject, it seems

that a common mistake has been made as to the selection of

the criterion for the comparison of the estimation methods.

In this paper, the common methods for estimating Weibull

parameters will first be outlined, and then the effectiveness

of these methods is compared based on a minimum mean-

square-error criterion which has never been used in pre-

vious studies. A Monte Carlo simulation is applied to ob-

tain the statistical properties of the estimated Weibull

parameters. It is found that the obtained results are very

different from those reported by previous authors.

Estimation of the Weibull parameters

Linear regression (LR) method

The most widely used method may be the linear regression

analysis due to its simplicity. The measured fracture

stresses are ranked in ascending order and then a proba-

bility of failure Pi is assigned to each stress ri. Since the

true value of Pi is unknown, a prescribed estimator has to

be used. The following four expressions are often applied

to define the probability estimator [8, 9, 14–18].

Pi ¼
i� 0:5

n
ð3aÞ

Pi ¼
i

nþ 1
ð3bÞ

Pi ¼
i� 0:3

nþ 0:4
ð3cÞ

Pi ¼
i� 3=8

nþ 1=4
ð3dÞ

where Pi is the probability of failure for the ith ranked

stress datum, and n is the sample size.

By taking the logarithm twice, Eq. (1) can be rewritten

in a linear form.

ln ln
1

1� P

� �
¼ m ln r� m ln r0 ð4Þ

The Weibull modulus can thus be obtained directly from

the slope term in Eq. (4) and the scale parameter can be

deduced from the intercept term.

Weighted linear regression (WLR) method

As proposed by Bergman [11], assuming the same weight

for each datum point of Eq. (4) is erroneous, and an

appropriate weight function needs to be applied to improve

the conventional LR.

Equation (4) can be reduced to

Y ¼ aþ bX ð5Þ

where Y ¼ ln ln 1=ð1� P Þ;X ¼ ln r, a ¼ �m ln r0, and

b=m. The WLR is based on a hypothesis that a straight line

fitting must minimize the weighted sum of squares of

deviations of the data Yi from the fitting function Y(Xi), i.e.

the equation

k2 ¼
X

Wi Yi � a� bXið Þ2 ð6Þ

takes the minimum value. By putting ¶k2/¶a=¶k2/¶b=0, it

results in

m ¼ b ¼
P

Wi
P

XiYiWi �
P

YiWi
P

XiWiP
Wi
P

X 2
i Wi �

P
XiWið Þ2

ð7Þ

�m ln r0 ¼ a ¼
P

YiWi � m
P

XiWiP
Wi

ð8Þ

where Wi is the weight factor for the ith datum point. Two

Weibull parameters can be calculated from Eqs. (7) and

(8). It is clear that the conventional LR is a special case of

the WLR at Wi=1.

Bergman [11] derived a weight factor based on the

theory of error propagation.

Wi ¼ 1� Pið Þ ln 1� Pið Þ½ �2 ð9aÞ

Faucher and Tyson [12] considered this question further

and proposed another weight factor which can be approx-

imated by

Wi ¼ 3:3Pi � 27:5 1� 1� Pið Þ0:025
h i

ð9bÞ
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Similarly to the conventional LR, the probability of failure

for each strength datum ranked in ascending order is also

approximated by Eqs. (3a–d).

Maximum likelihood (ML) method

The method of maximum likelihood is another often used

procedure for estimating Weibull parameters. In this proce-

dure, the Weibull parameters, m and r0, are sought, which

results in a Weibull function describing most likely the

experimental data. A likelihood function L is defined as:

L ¼
Yn

i¼1

f ðriÞ ð10Þ

where

f rið Þ ¼ dPi=dri ¼
m
r0

ri

r0

� �m�1

exp � ri

r0

� �m� �
ð11Þ

Equation (10) should be maximized, which requires

@ ln L=@m ¼ @ ln L=@r0 ¼ 0. The derivation is done on the

logarithm of L, since taking the derivation of a sum is

easier than that of a product. The detailed calculation can

be found in many papers [19–21]. The result is:

n=m� n
Xn

i¼1

rm
i ln ri

� �
=
Xn

i¼1

rm
i þ

Xn

i¼1

ln ri ¼ 0 ð12Þ

r0 ¼
Xn

i¼1

rm
i =n

 !1=m

ð13Þ

Although Eq. (12) is non-linear, it has a unique positive

solution for m [21], and may be solved by standard iterative

procedures, e.g. the Newton–Rhapson method. Once m is

determined, the scale parameter r0 can be estimated using

Eq. (13).

Moments method

The first and the second moments of the Weibull distri-

bution result in the mean value �r given by Eq. (2) and the

variance S2 of the distribution, respectively.

S2 ¼ r2
0 C 1þ 2

m

� �
� C2 1þ 1

m

� �� �
ð14Þ

The standard deviation S is the square root of the variance.

By dividing S by �r, one can get the coefficient of variation

CV of the Weibull distribution, which is a function of m

only

CV ¼ S
�r
¼ C 1þ 2

m

� �
� C2 1þ 1

m

� �� �1=2�
C 1þ 1

m

� �

ð15Þ

In the method of moments, it is assumed that the sample

moments equal those of the distribution. Setting the mean

and standard deviation of the experimentally measured data

in Eq. (15), the Weibull modulus can therefore be deter-

mined using the Newton–Rhapson method. And the scale

parameter may be calculated from the transformation form

of Eq. (2) as follows:

r0 ¼ �r

�
C 1þ 1

m

� �
ð16Þ

Monte Carlo simulation

Equation (1) can be rewritten as

r ¼ r0 ln
1

1� P

� �� �1=m

ð17Þ

If we consider a large ‘‘specimen’’ population with pre-

scribed m and r0 values, i.e. mtrue and r0,true, random

strength data can be obtained from Eq. (17) provided

random numbers between 0 and 1 are substituted for the

probability of failure P. For the sake of convenience, we

let mtrue=10 and r0,true=1 throughout this study. A com-

puter program was written, which used a sample of ran-

dom numbers to obtain strength values r1,r2,...,ri,...,rn.

This set of strength values was regarded as a fictitious

sample, and then analyzed with each of the 14 methods

listed in Table 1 to give the estimated values of the

Weibull parameters.

For illustration of the effect of the sample size, the

generated random samples were of size n increased

progressively from 5 to 100. The above simulation pro-

cedure was repeated 10,000 times; therefore, a total of

10,000 samples were generated and 10,000 sets of the

estimated Weibull modulus and scale parameter were

obtained for each sample size and each method. Then

the mean value �m, the standard deviation Sm, and the

mean square error MSEm of these Weibull moduli were

computed from

�m ¼
X104

j¼1

mj

104
ð18Þ
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S2
m ¼

X104

j¼1

mj � �m
� �2

104 � 1
ð19Þ

MSEm ¼
X104

j¼1

mj � mtrue

� �2

104
ð20Þ

where mj is the estimated Weibull modulus of the jth

sample. The coefficient of variation CVm of the Weibull

modulus was obtained from Sm divided by �m.

It should be pointed out that, for the LR, WLR and ML

methods, although the above simulation was carried out for

the arbitrarily chosen values of mtrue=10 and r0,true=1, its

results are valid for any value of mtrue and r0,true, since

previous studies have shown that the estimated m/mtrue is

distributed independently of the prescribed values of mtrue

and r0,true [7, 8, 10, 22, 23]. However, this property does

not hold for the moments method.

Results and discussion

Mean value and coefficient of variation

Figure 1 shows the dependence of the normalized mean

values of the estimated Weibull moduli, �m=mtrue, on the

sample size n for the 14 methods investigated. For the sake

of easy comparison and good clarity, the results obtained

with various types of the estimation methods are plotted in

one chart where the axes of each subfigure have the same

scale. For an unbiased estimate, �m=mtrue is expected to be

close to unity.

It can be seen that for all methods, the estimators of the

Weibull modulus are always biased, especially for smaller

sample sizes. In most cases the bias increases rapidly as the

sample size decreases. Previous authors [7, 8] have noticed

a similar phenomenon for their selected methods. Next, the

probability estimators have great effects on the bias of the

estimated Weibull modulus. In the LR, WLR_1 and

WLR_2, Eq. (3a) gives the least-biased estimate of the

Weibull modulus for n‡ 20. The next is Eq. (3d), followed

by Eq. (3c). The estimator given by Eq. (3b) leads to the

largest bias for all sample sizes examined. Finally, the

weight factors have also effects on the bias of the estimated

values. The two weight factors improve the results of the

estimators, Eqs. (3b–d); however, there is no significant

improvement on the results of the estimator, Eq. (3a) for n‡
20. These results are in agreement with those reported by

previous authors [8, 9, 11, 12, 15, 17].

In Fig. 2, the coefficient of variation of the estimated

Weibull modulus is plotted as a function of the inverse

square root of the sample size. The equation for the dotted

line in each subfigure is CVm=1/n1/2, used as a reference.

The results of the LR, ML and moments methods are close

to those given by Khalili and Kromp [7], Bergman [8] and

Trustrum and Jayatilaka [10]. Part of the results of the

WLR_1 and WLR_2 are also in agreement with those re-

ported by previous authors for their selected methods [11–

13].

Clearly, the coefficient of variation is as expected

decreasing with increasing sample size for all methods. In

Table 1 Estimation methods under investigation

Method Type Equation for Wi Equation for Pi

1 LR – 3a

2 LR – 3b

3 LR – 3c

4 LR – 3d

5 WLR_1 9a 3a

6 WLR_1 9a 3b

7 WLR_1 9a 3c

8 WLR_1 9a 3d

9 WLR_2 9b 3a

10 WLR_2 9b 3b

11 WLR_2 9b 3c

12 WLR_2 9b 3d

13 ML – –

14 Moments – –
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Fig. 1 Estimated Weibull modulus as a function of the sample size

for the LR (a), WLR_1 (b), WLR_2 (c), and ML and Moments (d).

(}) Eq. (3a), (h) Eq. (3b), (n) Eq. (3c), (s) Eq. (3d), (.) ML, (m)

Moments
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each of the LR, WLR_1 and WLR_2, the coefficients of

variation for different probability estimators are approxi-

mately equal at any sample size; thereby the probability

estimators have no significant effects on the coefficient of

variation. Similar results have also been reported by Khalili

and Kromp [7], Bergman [8] and Trustrum and Jayatilaka

[10]. However, the weight factors have great effects on the

coefficient of variation. Figure 2 indicates that, at various

sample sizes the data points for the LR are always slightly

higher than its reference line; those for the WLR_1 are

slightly lower than its reference line; however, those for the

WLR_2 are considerably lower than its reference lines. On

a whole, at a given sample size the coefficients of variation

for various types of the methods follow the sequences:

CVLR[CVWLR 1[CVWLR 2[CVML and CVMoments[CVML:

In the literature [7, 10, 13], the estimation precision of

the Weibull modulus was usually judged by the coefficient

of variation. The smaller the coefficient of variation is, the

higher the estimation precision is. Based on such a crite-

rion, previous authors concluded that the ML method leads

to the highest estimation precision of the Weibull modulus,

which has been recommended by several publications [1, 7,

13]. As for the methods based on the linear regression

analysis, the use of the weight factors leads to a more

accurate estimation of the Weibull modulus. Especially the

weight factor given by Eq. (9b) is better and method 11

comes first among the LR, WLR_1 and WLR_2 [13]. In

addition, from the biasing results shown in Fig. 1, previous

studies also came to the conclusion that in the LR method,

the probability estimator given by Eq. (3a) is the best,

while Eq. (3b) gives the worst estimation of the Weibull

modulus [7–9, 15, 17].

Criterion for the comparison of the estimation methods

Statistics textbooks tell us that the higher the probability of

computing an estimate near to the true value is, the higher

the estimation precision is. For an unbiased estimate, the

variance (or the standard deviation) may be used as a cri-

terion for the estimation precision. The smaller the vari-

ance is, the higher the estimation precision is. However, for

a biased estimate, the variance criterion becomes mean-

ingless, since it only reveals the probability of computing

an estimate near to the expected value, i.e. mean value. If

the expected value is far away from the true value, a poor

estimation is certain to occur even if the variance is very

small. In this case, the mean square error was recom-

mended by statisticians as the criterion for the estimation

precision [24].

By mathematical transformation, Eq. (20) can be

rewritten as

MSEm ¼
104 � 1

104
� S2

m þ �m� mtrueð Þ2 ð21Þ

Clearly, the mean square error is composed of two parts:

the variance and the square of the bias. The smaller the sum

of the two parts is, the higher the estimation precision is. It

is also seen that for an unbiased estimate, the mean-square-

error criterion is equivalent to the variance criterion.

As shown in Fig. 1, for all methods investigated, the

estimators of the Weibull modulus are always biased,

especially for smaller sample sizes. It indicates that the

estimation precision of the Weibull modulus is related not

only to the bias but also to the variance. Therefore, the

mean-square-error criterion should be used for the com-

parison of the estimation methods.

It should be mentioned that in statistics textbooks, the

coefficient of variation has never been used as a criterion

for the estimation precision. The coefficient of variation

is the standard deviation divided by the mean value,

which represents the relative breadth of the estimated

data distribution with reference to the mean. The use of

the coefficient of variation as the criterion will be highly

advantageous to the estimation methods with a larger

estimated �m, for example to the ML method, since a

larger �m results in a smaller coefficient of variation.
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Fig. 2 Dependence of the coefficient of variation of the estimated

Weibull modulus on the inverse square root of the sample size for the

LR (a), WLR_1 (b), WLR_2 (c), and ML and Moments (d). (}) Eq.

(3a), (h) Eq. (3b), (n) Eq. (3c), (s) Eq. (3d), (.) ML, (m) Moments
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One of the possible reasons for the use of the coefficient

of variation as the criterion by previous authors is that they

considered the bias of the estimated Weibull modulus can

be removed with a correction factor [8, 10, 13, 25, 26].

However, from analytical analyses and numerical calcula-

tions, Peterlik [27] pointed out that each set of strength data

gives the statistically correct Weibull parameters and that

the bias arises only from the method of adding the

parameters, if one tries to obtain a mean value from a

number of sets of strength data. In practice, when only one

set of strength data is available, the correction factor should

not be applied.

Comparisons based on the mean square error

Table 2 shows the normalized square root of the mean

square error of the estimated Weibull modulus for the 14

methods and selected sample sizes. Clearly, for any

method, as the sample size n increases the value offfiffiffiffiffiffiffiffiffiffiffiffiffi
MSEm

p
=mtrue decreases and hence the estimation preci-

sion of the Weibull modulus increases. It can also be seen

that the probability estimators and the weight factors both

have effects on the mean square error.

Table 3 gives the comparison between different proba-

bility estimators. It can be seen that except for the WLR_1

the ranking number of the probability estimators is highly

sensitive to the sample size. In the LR, the estimator given

by Eq. (3b) gives the most accurate estimation for 5£ n£
10; Eq. (3c) is the best for 11£ n£ 28; Eq. (3d) is to be

preferred for 29£ n£ 69; however, Eq. (3a), recommended

by several authors [7–9, 15, 17], comes first only for n‡ 70.

In the WLR_1, the estimator, Eq. (3b), always leads to the

highest precision of estimation for all sample sizes exam-

ined. In the WLR_2, Eq. (3c) is the most successful esti-

mator for n‡ 9, and Eq. (3b) for 5£ n£ 8.

In Table 4 the comparison between different weight

factors is shown. It is clear that for any probability esti-

mator, the weight factor given by Eq. (9b) results in the

most accurate estimation of the Weibull modulus for n‡ 7,

followed by the weight factor, Eq. (9a). However, the LR

without the weight factor always gives the worst estimation

for any probability estimator and any sample size.

Table 5 gives the comparison between the ML method

and the others. It can be seen that for smaller sample sizes

the ML method leads to a poorer estimation of the Weibull

modulus than the others. For example, for n£ 52 the

WLR_2 with an appropriate probability estimator is better

than the ML. It arises from the fact that the bias of the

Weibull modulus estimated with the ML method increases

rapidly as the sample size decreases, as shown in Fig. 1.

These results indicate that for smaller sample sizes the

smallest coefficient of variation does not satisfactorily

compensate for a large bias for the ML method.

From Tables 2–5, it is shown that among the 14 meth-

ods investigated, method 6 gives the most accurate esti-

mation of the Weibull modulus for n=5; method 10 is the

best for 6£ n£ 8; method 11 is to be preferred for 9£ n£ 52;

method 13, i.e. the ML method recommended to be used

for all sample sizes by previous studies [1, 7, 13], comes

first only for n‡ 53.

Table 2 Normalized square root of the mean square error,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEm
p

=mtrue, of various estimation methods

n Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 0.7023 0.5184 0.5949 0.6280 0.6356 0.5030 0.5580 0.5820 0.6481 0.5050 0.5651 0.5910 0.9155 0.8255

10 0.3487 0.3133 0.3175 0.3255 0.3267 0.2998 0.3038 0.3100 0.3068 0.2938 0.2900 0.2940 0.3863 0.3844

20 0.2293 0.2303 0.2210 0.2221 0.2165 0.2086 0.2091 0.2112 0.1957 0.2003 0.1917 0.1921 0.2174 0.2326

30 0.1843 0.1918 0.1813 0.1811 0.1742 0.1698 0.1703 0.1714 0.1559 0.1599 0.1537 0.1539 0.1633 0.1795

40 0.1600 0.1692 0.1591 0.1584 0.1505 0.1475 0.1480 0.1487 0.1347 0.1372 0.1330 0.1332 0.1366 0.1519

50 0.1432 0.1530 0.1434 0.1425 0.1335 0.1316 0.1318 0.1323 0.1198 0.1217 0.1184 0.1186 0.1190 0.1336

60 0.1316 0.1411 0.1323 0.1313 0.1226 0.1211 0.1213 0.1217 0.1099 0.1111 0.1088 0.1089 0.1075 0.1212

70 0.1215 0.1311 0.1226 0.1216 0.1130 0.1118 0.1119 0.1123 0.1015 0.1023 0.1005 0.1007 0.0982 0.1108

80 0.1152 0.1238 0.1162 0.1153 0.1062 0.1053 0.1054 0.1056 0.0957 0.0961 0.0948 0.0949 0.0918 0.1046

90 0.1088 0.1170 0.1099 0.1090 0.0996 0.0988 0.0989 0.0991 0.0898 0.0901 0.0891 0.0892 0.0857 0.0983

100 0.1027 0.1106 0.1039 0.1030 0.0949 0.0942 0.0943 0.0945 0.0857 0.0858 0.0849 0.0851 0.0813 0.0926

Table 3 Order number of the probability estimators ranked based on

the estimation precision of the Weibull modulus

Type Sample size Probability estimator

Eq. (3a) Eq. (3b) Eq. (3c) Eq. (3d)

LR 5£ n£ 10 4 1 2 3

11£ n£ 12 4 2 1 3

13£ n£ 18 4 3 1 2

19£ n£ 28 3 4 1 2

29£ n£ 49 3 4 2 1

50£ n£ 69 2 4 3 1

70£ n£ 100 1 4 3 2

WLR_1 5£ n£ 100 4 1 2 3

WLR_2 5£ n£ 8 4 1 2 3

9£ n£ 10 4 2 1 3

11£ n£ 12 4 3 1 2

13£ n£ 100 3 4 1 2
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Estimation of the scale parameter

Using Monte Carlo simulations, the 10,000 estimated val-

ues of the scale parameter r0 were produced for each

sample size and each method. The mean value, the standard

deviation and the mean square error were calculated. And

then the 10,000 estimated r0 were ranked in ascending

order and divided into 40 equally sized intervals. The

number of estimated r0 falling into each interval was

counted. This number, normalized through division by

10,000, the total number of estimated r0, produces the

relative frequency of occurrence, which was taken as the y-

value. The midpoint of the given interval was used as the x-

value. The resulting histogram can be regarded as an

empirical probability density distribution [7]. For the sake

of comparison, the same data processing was also carried

out for the estimated Weibull moduli.

As an example, the probability density distributions of

the estimated Weibull modulus and scale parameter at a

sample size of 30 for 5 selected methods are shown in

Fig. 3, where the x-axes of two subfigures have the same

range and the same scale. The results of other sample sizes

and other methods are similar to those shown in Fig. 3.

It can be seen that all methods give a similar distribution

of r0/r0,true that scatters in the vicinity of the true value in a

much smaller range, as compared with the Weibull mod-

ulus. Simulations reveal that for any sample size and any

method, the normalized square root of the mean square

error of the estimated scale parameter is about one tenth of

that of the estimated Weibull modulus; therefore, the scale

parameter can be estimated with accuracy about an order of

magnitude higher than the Weibull modulus [7, 18].

From Fig. 3, it may be notable that the distribution of

m/mtrue is asymmetrical and lightly skewed to the right;

the distribution of r0/r0,true, however, takes an approxi-

mately symmetrical form. Similar results have also been

reported by Khalili and Kromp [7]. For any sample size

and any method, the mean value of the estimated scale

parameter is always close to its true value, and its bias is

negligible. Therefore, the estimator of the scale param-

eter obtained with any method is approximately unbi-

ased.

Safety factor

From the point of view of material sciences, an accurate

estimation of the Weibull parameters is pursued [7–18].

However, from an engineering point of view, the safety is

of the first importance, while the estimation precision is the

Table 4 Order number of the weight factors ranked based on the

estimation precision of the Weibull modulus

Probability estimator Sample size Weight factor

– Eq. (9a) Eq. (9b)

Eq. (3a) 5£ n£ 6 3 1 2

7£ n£ 100 3 2 1

Eq. (3b) n=5 3 1 2

6£ n£ 100 3 2 1

Eq. (3c) 5£ n£ 6 3 1 2

7£ n£ 100 3 2 1

Eq. (3d) 5£ n£ 6 3 1 2

7£ n£ 100 3 2 1

Table 5 Range of the sample

size where the ML method is

superior to the others

Type Sample size

LR n‡ 19

WLR_1 n‡ 24

WLR_2 n‡ 53

Moments n‡ 11
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Fig. 3 Probability density distributions of the estimated Weibull

modulus (a) and scale parameter (b) at a sample size n=30. (s)

Method 2, (}) Method 5, (n) Method 11, (h) Method 13, (+) Method

14
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second. For the prediction of the probability of failure at

low stresses or the fracture stress at low probabilities of

failure, the Weibull modulus has a more effect than the

scale parameter does. This can be visualized by plotting the

Weibull curve according to Eq. (1). Whilst the scale

parameter moves the curve left and right, the Weibull

modulus rotates the curve. An overestimation of the Wei-

bull modulus often leads to an underestimation of the

probability of failure at low stresses or an overestimation of

the fracture stress at low probabilities of failure, and hence

a lower safety will arise in reliability prediction.

In Fig. 4, the occurrence probability of the Weibull

modulus overestimation, i.e. m/mtrue>1 is plotted as a

function of the sample size. The higher the probability is,

the lower the safety is. Clearly, the probability for the ML

method is the highest, which is always larger than about

55% in the range examined, followed by the moments

method. It implies that for the two methods, the overesti-

mation of the Weibull modulus occurs more frequently

than its underestimation [7, 28]. In addition, the probability

of overestimation for the two method increases as the

sample size decreases. However, the probabilities of

overestimation for the LR, WLR_1 and WLR_2 methods

are always smaller than 50%. Thus it can be seen that these

methods result in a higher safety than the ML and moments

methods.

Conclusions

Monte Carlo simulations reveal that the estimated scale

parameter is approximately unbiased and has a much

higher accuracy than the Weibull modulus. However, the

estimator of the Weibull modulus is always biased, espe-

cially for smaller sample sizes. The mean square error is

therefore used as a criterion for the comparison of the

estimation precision of different methods.

It is shown that in the LR and WLR_2, the preferred

probability estimator varies with the sample size; however,

in the WLR_1, the most successful estimator is given by

Eq. (3b) for all sample sizes. Also, in the regression anal-

ysis, the use of the weight factors improves the estimation

precision of the Weibull modulus. The weight factor given

by Eq. (9b) is to be preferred for n‡ 7. It is concluded that

method 6 gives the most accurate estimation of the Weibull

modulus for n=5; method 10 is the best for 6£ n£ 8; method

11 is to be preferred for 9£ n£ 52; method 13, i.e. the ML

method, comes first only for n‡ 53. Moreover, it is reaf-

firmed that for any method, the accuracy of the estimated

Weibull modulus increases with increasing sample size.

The estimation methods were also compared from an

engineering point of view. It is found that the ML and

moments methods lead to the overestimation of the Wei-

bull modulus more frequently than its underestimation, and

hence with a lower safety than the LR, WLR_1 and

WLR_2 methods.
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